首页> 外文OA文献 >A Gaussian Mixture MRF for Model-Based Iterative Reconstruction with Applications to Low-Dose X-ray CT
【2h】

A Gaussian Mixture MRF for Model-Based Iterative Reconstruction with Applications to Low-Dose X-ray CT

机译:基于模型迭代重建的高斯混合mRF算法   应用于低剂量X射线CT

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Markov random fields (MRFs) have been widely used as prior models in variousinverse problems such as tomographic reconstruction. While MRFs provide asimple and often effective way to model the spatial dependencies in images,they suffer from the fact that parameter estimation is difficult. In practice,this means that MRFs typically have very simple structure that cannotcompletely capture the subtle characteristics of complex images. In this paper, we present a novel Gaussian mixture Markov random field model(GM-MRF) that can be used as a very expressive prior model for inverse problemssuch as denoising and reconstruction. The GM-MRF forms a global image model bymerging together individual Gaussian-mixture models (GMMs) for image patches.In addition, we present a novel analytical framework for computing MAPestimates using the GM-MRF prior model through the construction of surrogatefunctions that result in a sequence of quadratic optimizations. We alsointroduce a simple but effective method to adjust the GM-MRF so as to controlthe sharpness in low- and high-contrast regions of the reconstructionseparately. We demonstrate the value of the model with experiments includingimage denoising and low-dose CT reconstruction.
机译:马尔可夫随机场(MRF)已广泛用作诸如层析重建等各种反问题中的先验模型。虽然MRF提供了建模图像中空间依赖性的简单有效的方法,但它们仍然存在参数估计困难的事实。实际上,这意味着MRF通常具有非常简单的结构,无法完全捕获复杂图像的微妙特征。在本文中,我们提出了一种新颖的高斯混合马尔可夫随机场模型(GM-MRF),该模型可以用作表达能力强的先验模型,用于去噪和重构等反问题。 GM-MRF通过合并各个图像块的高斯混合模型(GMM)形成一个全局图像模型。此外,我们提出了一种新的分析框架,该模型通过使用GM-MRF先前模型通过构建替代函数来计算MAP估计二次优化序列。我们还介绍了一种简单有效的方法来调整GM-MRF,以便分别控制重建的低对比度和高对比度区域的清晰度。我们通过包括图像降噪和低剂量CT重建在内的实验来证明该模型的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号